A tunable refractive index matching medium for live imaging cells, tissues and model organisms
نویسندگان
چکیده
In light microscopy, refractive index mismatches between media and sample cause spherical aberrations that often limit penetration depth and resolution. Optical clearing techniques can alleviate these mismatches, but they are so far limited to fixed samples. We present Iodixanol as a non-toxic medium supplement that allows refractive index matching in live specimens and thus substantially improves image quality in live-imaged primary cell cultures, planarians, zebrafish and human cerebral organoids.
منابع مشابه
Optical parameters of the tunable Bragg reflectors in squid.
Cephalopods (e.g. octopus, squid and cuttlefish) dynamically tune the colour and brightness of their skin for camouflage and communication using specialized skin cells called iridocytes. We use high-resolution microspectrophotometry to investigate individual tunable Bragg structures (consisting of alternating reflectin protein-containing, high-refractive index lamellae and low-refractive index ...
متن کاملInvestigation of thermal tunable nano metallic photonic crystal filter with mirror symmetry
Using the transfer matrix method, the effect of temperature on thetransmission spectra of thermal tunable nano metallic photonic crystal filter has beeninvestigated. Three different materials H (high refractive index material), L (lowrefractive index material) and M as a metallic layer, have been used to make thisstructure. M layer is considered to be Silver. The complex refractive index of Sil...
متن کامل2,2'-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy.
The use of high numerical aperture immersion lenses in optical microscopy is compromised by spherical aberrations induced by the refractive index mismatch between the immersion system and the embedding medium of the sample. Especially when imaging >10 micro m deep into the specimen, the refractive index mismatch results in a noticeable loss of image brightness and resolution. A solution to this...
متن کاملTomographic Phase Microscopy
In visualizing transparent biological cells and tissues, the phase contrast microscope and its related techniques have been a cornerstone of nearly every cell biology laboratory. However, phase contrast methods are inherently qualitative and lack in 3-D imaging capability. We introduce a novel tomographic microscopy for quantitative three-dimensional mapping of refractive index in live cells an...
متن کاملRefractive index variance of cells and tissues measured by quantitative phase imaging.
The refractive index distribution of cells and tissues governs their interaction with light and can report on morphological modifications associated with disease. Through intensity-based measurements, refractive index information can be extracted only via scattering models that approximate light propagation. As a result, current knowledge of refractive index distributions across various tissues...
متن کامل